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Many researchers have made a lot of progress in studying the evaluation of fracture 

probability of brittle materials. However, studies of fracture probability for elastic-plasticity 

have not been made yet. An evaluation method for fracture probability which is grafted onto a 

2-parameter criterion and statistical probability analysis is not only introduced in this study, but 

also applied to the simple 2-dimensional model and carbon steel piping to vealuate the effect 

of statistical variables. 
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1. Introduction 

In spite of technological improvements in 

industrial society, there has been an increasing 

number of work-related accidents on many in- 

dustrial sites. Recently, industrial structures and 

machinery have become excessively large and 

complex due to increased business competitions. 

This has resulted in more accidents and an 

increasing loss of lives and economic damage. In 

general, the damage and fractures of structural 

components occurs in the most susceptible areas. 
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Also, a defective crack that provided during the 

manufacturing process or the operation of the 

structure grows and results in a fracture. In this 

case, the safety of structural components is 

influenced by the size of the defects and micro 

structure of materials. The reliability and safety 

based on the statistical probability evaluation 

method for the damage should be evaluated since 

the defects and micro formations show the prob- 

ability distribution characteristics. 

The research grafting fracture mechanics and 

reliability engineering to predict the fracture pro- 

bability has been pursued by many researchers 

(Bloom, 1984; Provan, 1987 ; Virkler et al., 1979 ; 

Kitagawa et al., 1986; Okamura et al., 1975; 

Haris, 1977 ; Besuner and Tetelman, 1977 ; 

Okamura and ltagaki, 1983 ; Yoon and Okamura, 

1989; Yoon, 1990). The results are used for 

evaluating safety and reliability. However, it is 
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hard to apply this method to an elastic-plastic 

fracture accompanied by a large plastic deforma- 

tion. It has to be based on the elastic-plastic 

fracture mechanics. 

The fracture theories based on elastic-plastic 

mechanics are the J-integral method and the 2- 

Parameter Criterion. The 2-Parameter Criterion 

is applied to the real structure because of its 

comparatively preferable applications. 

The 2-Parameter Criterion is based on the 

Dugdale model (Dugdale, 1960) on the assump- 

tion that it is perfect elastic plasticity, which 

was developed by Central Electricity Generating 

Board (CEGB) and called R6 (Milne, 1983). 

Numerous modifications for the 2-Parameter Cri- 

terion have been pursued through application and 

evaluation on real instruments and structures 

(Shih et al., 1983 ; Bloom, 1983 ; Kobayashi et ai., 

1987). 

However, it is rare to find an evaluation meth- 

od for structural fracture probability used by 

statistical and stochastic methods based on elas- 

tic-plastic mechanics. In this study, an evaluation 

method for structural fracture probability on a 

structural sub-material with a defect is presented 

by a 2-Parameter Criterion based on elastic- 

plastic mechanics. This method will be applied to 

the general machinery structures and fracture 

probability will be determined. Finally, the effects 

of parameters to estimate the fracture probability 

will be discussed. 

2. The D e v e l o p m e n t  of  S i m u l a t i o n  
P r o g r a m  

In this study, The computer simulation method 

of predicting the fracture probability for elastic- 

plastic materials which were discontented with 

small scale yielding has been established, Frac- 

ture probability was obtained from particular 

structure materials, while several effects of para- 

meters were discussed. The flowchart of program 

is presented in Fig. 1. 

As a method of study, the fracture assessment in 

structural materials was based on the 2-Parameter 

Criterion so that a computer program could 

be developed. Statistical method, Monte Carlo 

Dugdale and R6 method setting up 

I 
Input of deterministic data / 
(flow stress, etc.) 

I 
Generation of random numbers for I 
initial cracks, Klc and yield stress 

I 
i=i00 to 500 I 

(for beading stress) I 
j=l to 3 r] ,  

(for statistical parameters: I I 

o'y . . . .  Kr~, etc. ) ] 

I 
ii=! to IO0O0 I 

(for Calculation of prob.) I 
I 

Ica,calatioa of ~, [ 
I 

[Calculation of S, and K, ] 

I 
Summing up times that S, and g~[ 
exist out of FAC 

ICalco,atioa of,r.ctnre prababili  I 

l 
Fig. 1 Flowchart of computer program 

Simulation; probability calculation graph, and 

other programs were developed. Then, these two 

programs were fused. 

3. Frac ture  A s s e s s m e n t  by 
2 - P a r a m e t e r  Cri ter ion 

3.1 Fai lure asses sment  curve (FAC) 
The 2-Parameter criterion was developed by 

using the Dugdale model. The crack opening 

displacement of the crack tip in a center crack in 
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an infinite plate subjected to a remote tensile 
stress is given by the following relationship 
(Dugdale, 1960). 

where, 2a is crack length, ~ is applying stress, o'y 
is yield strength, E is Young's modulus. Regard- 
less of  yield scale, assuming that failure occurs 
when it is ~ = 8 c  (critical crack opening displace- 
ment) in accordance with crack opening dis- 
placement condition. Fracture toughness Kc as 
the following equation: 

Kc2 (2) 
~-- Eay 

Therefore, from Eq. (I) and Eq. (2) stress ~ of 
any yield scale is determined. Also, stress intensi- 
ty factor K, dealing with 6, is defined by the 
following equation. 

K = a f ~ d  (3) 

make K, o', non-dimension and then define Kr, 

Sr 

Also, using Eq. (1) and (4), the relation between 
Kr and Sr is obtained by 

[ 
Through Eq. (5), when failure occurs the locus of  
K~ and S~ can be calculated, and this locus is 
defined as the Failure Assessment Curve (FAC). 
Figure 2 shows FAC which takes Kr for vertical 

Fig. 2 

1.5 

FAC 
LO / Failure 

0 
0.5 1.0 1.5 

Sr 
Failure assessment diagram using Dugdale 
model 

axis and Sr for horizontal axis. It is defined as the 
Failure Assessment Diagram (FAD).  

In the small scale yielding, fracture occurred 
with Kr = 1 at vertical axis ; and in the full scale 
yielding, plastic collapse comes from S r = l  at 
horizontal axis. In addition, fracture occurred on 
the FAC corresponding to point for a certain 
scale yielding. 

The R6 method based on the Dugdale model 
was revised and the revision 3 of R6 has already 
been published. Revision 3 contains three types of  
options. 
Option 1: It is adapted to many materials. The 
stress-strain curve of materials is continuous. 

Kr = ( 1 - 0 . 1 4 L r  2) [0.3 +0.7 exp ( - 0 . 6 5 L r  8) ] (6) 

Option 2:  It is adapted to materials when the 
rate of primary strain hardening is high and the 
stress-strain curve is discontinuous. 

K - {  Eet  + ayLr 3 ~-1/2 
r - - \  at 2Eet ] (7) 

where, E is the elastic modulus and et is the true 
strain. 
Option 3:  It is adapted in case that the FAC 
of peculiar materials and shapes of the struc- 
tural components can be obtained by J-integral 
analysis. 

[ jre \1/2 ) (8) 

where, jre is the elastic property of ]-integral,  jr. 
Lr  used in the above equations is 

P (9) L ~ = p ,  

where, P is load and Py is plastic collapse load 
(the yield strength fly). L r  is the same as Sr under 
tensile loading and is restricted by following 
L r max, 

t rrnax=~-y (10) 

where, /°I is plastic collapse load under consi- 
deration of  strain hardening. 6y of  Py is replac- 
ed with flow stress o/ (the mean value of yield 
strength cry and tensile strength tTn). 

Option I was applied in this study because of  
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its simple application. However, in the other 
cases, it is possible to apply other options through 

minor modification. 

3.2 Deterministic  evaluation of FAD by the 

simple 2-dimensional model 

Evaluate the FAD by the simple 2-dimensional 
model in Fig. 3. In this case, stress intensity factor 

(Anderson, 1995) is 

~ = a f ~ F ( ~ )  (1 I) 

\ 1--/~ / 

= (  152 [kJ/mZ] " 1  --0.3 z178"a[GPa] )½ 

= 172.62[MPafm-] 

(13) 

And, since L r  max as the critical value is related 
to yield strength ay~362[MPa] ,  tensile strength 

an--592[MPa] and flow stress a1=  aYWaB--477 
2 

[MPa], therefore, 

where, ~ = a / W ,  F(~)  is, 

F(~) = ~ / ~ t a n  ~ -  0.923+0.199{cos(x~/2)l-sin(a'~/2)}' (12) 

The carbon steel STS42 which is used in the 
generating plant is considered as an applicable 
material. Material properties are shown in Table 

1. 
In the calculation, a = 1 0 ~ 3 0 [ m m ] ,  W = I 0  

[cm] and 0-=100--300[MPa] is adapted to Eq. 

(11) and (12). Kc in Eq. (4) is gained by 

Table 1 Material properties of STS 42 

Parameter Value 

Yield strength 0"y 362[MPa] 

Tensile strength an 592[MPa] 

Flow stress 0-I 477[MPa] 

Elastic modulus E 178.4[GPa] 

Fracture toughness Jic 152 [kJ/m z] 

Fig. 3 

M 

6M 
O'= 

IV z 

M 
The 2-dimensional model for evaluation of 
FAC 

Lr max-P1-  0"I=1.318 (14) 
Py 0"y 

The results calculated by applying these equa- 
tions are plotted in Fig. 4. The thick solid lines 
are FAC which represent the Dugdale model 
and R6-rev.3. The thin solid line shows the cal- 
culation results of Eq. (6) and (9): its lengths of  
initial crack are 10[mm], 20[mm] and 30[mm], 
while the bending stress has changed 100[MPa] 
to 300[MPa]. The Figure shows that it is safe in 
the case of the small bending stress since the thin 
solid line exists inside the FAC, but it's not safe 
as the bending stress becomes larger since the 
line exists outside the FAC. There is no practical 
difference between the Dugdale model and R6- 
rev.3 when the crack length is large. However, 
when the crack length is small and the bending 
stress is large (part of circle), the Dugdale model 
and R6-rev.3 are different. For instance, as shown 
in the line ( a : 1 0 [ m m ] ) ,  it fails according to 
the Dugdale model, but is safe according to R6- 

rev.3. 

1-5 

LO 

0-5 

Fig. 4 

stress i n c r e a ~ / . , J / / ~  20|mml 

0..5 1.0 1.5 
L r  

Failure evaluation in FAD 
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4. Probabilistic Evaluation by 
2-Parameter  Criterion 

In the statistical method, fracture probabil i ty 

is determined by a simple calculation from prob- 

ability distribution, numerical analysis and the 

use of the Monte Carlo Simulation. When prob- 

ability distribution models of the parameters 

which reign the failure are the same, computation 

is possible by simple calculation or numerical 

integration. But, when the distribution models are 

different, it must be calculated by using the Monte 

Carlo Simulation. In this study, fracture prob- 

ability is calculated by using the Monte Carlo 

Simulation. 

The fracture probabil i ty is obtained as the rate 

of times that Kr  and Sr  induced from such prob- 

ability functions as the initial crack length, the 

fracture toughness and the yield strength exist 

outside FAC for the total number of trials 

(10,000 times). Eq. (15) is the fracture probabil-  

ity formula. 

Pz= fK~= f (Kr) (St, Lr=O) 

: frr(s~)f(Kr)  (St,  Lr>O and K r > 0 )  (15) 

=fs~=LL o., (Kr----O) 

4.1 Probability evaluation by 2-dimension 

model 

In the calculation of the fracture probability, 

the length of the initial crack, the yield strength 

and the fracture toughness are treated as the 

probabilistic variables. There are some kinds of 

distribution information of  the initial crack 

size, such as exponential distribution (Jouris and 

Shaffer, 1980), log-normal  distribution (Nilsson, 

1979) and Gamma distribution (Nilsson, 1979). 

In this paper, we assume that the initial crack 
length distribution follows the exponential distri- 
bution. 

Normal distribution and log-normal  distri- 

bution were reported to the distribution of yield 

strength or fracture toughness (Okamura and 

Itagaki, 1983). In this study, normal distribution 

Table 2 Input data for calculation 

Parameter Value 

Width [mml 100 

Stress [MPa] 100-500 

Non-dimensional initial crack length 5, 10, 15 
(Exponential distribution : ,~) 

Yield strength [MPa] 
300, 350, 400 

(Normal distribution : mean ay~_~) 

Yield strength [MPa] 
5, 20, 35 

(Normal distribution : Standard dev. aye) 

Fracture toughness [MPa~m ] 
120, 170, 230 

(Normal distribution : mean K~,e~) 

Fracture toughness [MPa,/m-] 
5, 10, 15 

(Normal distribution : Standard dev. K~d) 

was used. 

The initial crack length is used as the non-  

dimensional variables when divided by width W. 

Input data for calculation is shown in Table 2. 

In the table, /~ is the exponential distribution 

parameter of the initial crack length, ¢Tymean and 

ffysa are the mean and standard deviation of 

the yield strength, and Kcmeo~ and Kcsa are the 

mean and standard deviation of the fracture 

toughness. Mean and standard deviation of the 

non-dimensional  initial crack length is 0.2, 0.1, 

and 0.067, because the relationship between the 

parameter of  exponential distribution/1 and mean 

and standard deviation of normal distribution is 

reciprocal. 

4.1.1 The effect of initial crack variation 

Fracture probabili ty is obtained by changing 

the distribution parameter /~ to 5, 10, 15 as the 

non-dimensional  initial crack length follows 

the exponential distribution, as shown in Fig. 5. 

Another probabili ty variables are given as the 

middle values (ex. mean is 350[MPa],  standard 

deviation is 20[MPa] in the case of  yield 

strength) were applied. In the Figure, the vertical 
axis is cumulative probabil i ty of fracture and the 

horizontal axis is the bending stress. This Figure 

falls on the normal probabil i ty paper, because the 
scale of  vertical axis is the normal distribution 

probability. The oblique line is subject to the 

Dugdale model and the solid line is subject to 
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R6-rev.3. In Fig. 5, There is no practical differ- 

ence between the two models when the bending 

stress is small. Yet, the difference increases as the 

bending stress increases. Also, the effect of initial 

crack distribution is definite when the bending 

stress is small. The effect decreases as the stress 

increases. 

4.1.2 The effect of yield strength variations 

It is assumed that the distribution of yield 

strength follows the normal distribution. The 

standard deviation of yield strength was fixed 20 

[MPa], and the mean was changed at 300[MPa], 

350[MPa] and 400[MPa]. The distribution para- 

meter of  the initial crack length, the mean and 

standard deviation of fracture toughness were 

fixed on the middle value. The results are shown 

in Fig. 6. From Fig. 6, it was found that the effect 

of the mean yield strength becomes considerably 

smaller as the bending stress decreases, but the 

effect becomes larger when the stress increases. 

The results that the mean yield strength was 

fixed at the middle value (350[MPa]).  The stan- 

dard deviation was changed at 5[MPa],  20[MPa] 

and 35EMPa] are shown in Fig. 7. in this case, 

it was shown the complicated appearances that 

the effect of the standard deviation of  yield 

strength increases gradually and it is eventually 

reversed. 

4.1.3 The effect of fracture toughness vari- 

ation 

Figure 8 represents the effect of the mean frac- 

ture toughness. The mean fracture toughness was 

changed at 120 MPafm- ,  170 M P a f m -  and 230 

MPafm- .  The other distribution parameters were 

fixed at a middle value, same as before. As shown 

in Fig. 8, the effect of the mean fracture toughness 

is always large when the bending stress is small. 

But as the bending stress increases, the effect in 

the Dugdale model decreases rapidly, while the 

effect in R6 rev.3, decreases more slowly. 

The effect of the standard deviation of  fracture 

toughness which was changed at 5 M P a f m ,  15 

MPa~/m, and 25 M P a ( m  , are shown in Fig. 9. 

As shown in the figure, the effect is very small, 
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because the shapes of curves are almost the same 

in spite of the difference in standard deviation of 

fracture toughness. 

4.2 Application of the carbon steel  pipe in 
the power plant 

In this paragraph, The effect of several para- 

meters is discussed by applying the evaluation 

method of the fracture probability to the real 

structure. It is assumed that the bending moment 

is loaded on the carbon steel pipe with circum- 

ferential crack in Fig. 10. 

As Fig. 10 illustrates, when the bending mo- 

ment M is loaded on the steel pipe, the bending 

stress is as follows 

Bending moment 

Fig. 10 Condition of loading and shape of crack 

M 
(16) orb-- 2xRZ t 

where l is thickness of pipe, R is average radius. 

The stress intensity factor (Tada et al., 1985) of 

the crack tip is given by 

K=ab ~(v/~(RO) .F(O) (17) 

where, 0 is the half angle of the crack, F(O) is 

the correction factor: 

3 5 

F ( O ) : l + 6 . 8 ( O ) 2 - 1 3 . 6 ( O ) z + 2 0 (  Ox)½ (18) 

In the calculation of fracture probability, the size 

of the initial crack, the yield strength and the 

fracture toughness were referred to as the prob- 

ability variables as in the 2-dimensional model. 

The half angle (0) of the crack for the size of 

crack was considered as the variable. 

With the input data, the size of the crack is 

different from the 2-dimensional model, but the 

others are the same. The value of exponential 

distribution parameter/1 on the half angle (0) of 

the crack is I/5, 1/10, 1/15. It is related to 5 °, 10 °, 

15 ° in the mean and standard deviation of normal 

distribution. In this paragraph, we only consider 

R6 rev.3 as the criterion of failure. 

4.2.1 The effect  of the variation of the ini- 
tial crack angle 

The results that are calculated after changing 

the exponential distribution parameter of initial 

crack angle to I/5, 1/10, 1/15 are shown in Fig. 

I I. The effect is large when the bending moment 

is small, and the effect decreases as the bending 

moment becomes larger like the 2-dimensional 

model. 

For the 2-dimension model, curves change 
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slowly at small stress, but change abruptly at 

large stress. However, for carbon steel pipes, the 

curves change abruptly at small stress and change 

slowly as stress becomes larger. 

4.2.2 The effect of variation of the yield 
strength 

Figure 12 shows the effect of the mean yield 

strength on fracture probability. The mean yield 

strength was changed at 300, 350 and 4001-MPa] 

as same as in the 2-dimensional model. The effect 

is similar to the 2-dimensional model. 

Figure 13 shows the difference in the fracture 

probability by changing the standard deviation of 

yield strength. The standard deviation of yield 

strength was changed at 5, 20 and 35[MPa]. As 

shown in Fig. 13, there is not nearly the effect 

on the standard deviation. The result is different 

from the 2-dimensional model's. 

4.2.3 The effect  of the variation of the 
fracture toughness 

The results of calculation of fracture probabi- 

lity for the mean and standard deviation of frac- 

ture toughness as variable are shown in Figs. 14 

and 15. The effects are similar to those in the 2- 

dimension model except for some differences in 

the small bending stress. 
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5. Conclusions 

In this study, a computer program was deve- 

loped that predicts fracture probability for the 

elastic-plastic materials by the 2-parameter cri- 

terion. The effects of the distribution parameters 

on fracture probability were discussed by adap- 

ting the simple 2-dimensional model to the pro- 

gram. Also, the effect of parameters were dis- 

cussed by applying the method of the fracture 

probability to the real structure. 

The results obtained from this study are as 

follows : 

(1) The result from the deterministic evalua- 

tion of FAD is that it is safe in the case of the 

small bending stress since the thin solid line exists 

inside the FAC, but it's not safe when the bending 

stress becomes larger since the line exists outside 

the FAC. 

There is no practical difference between the 

Dugdale model and R6-rev.3 when the crack is 

large. However, when the crack is small, the 

Dugdale model and R6-rev.3 are different. 

(2) The result from the probability evaluation 

by the 2-dimensional model is that the effect of 

mean yield strength becomes considerably smaller 

as the bending stress decreases, but the effect is 

larger when the stress increases. For the standard 

deviation of yield strength, the effect increases 

gradually and it is eventually reversed. The effect 

of the mean fracture toughness always is large 

when the bending stress is small. As the bending 

stress increases, the effect in the Dugdale model 

decreases rapidly, while the effect in R6 rev.3. 

decreases more slowly. 

(3) The result from applying the evaluation 

method of fracture probability to the real struc- 

ture is that the effect is large when the bending 

moment is small, and the effect decreases as the 

bending moment becomes large like the 2-dimen- 

sional model. 

For the 2-dimensional model, curves change 

slowly at small stress, and change abruptly at 

large stress. However, for carbon steel pipes, the 

curves change abruptly at small stress and change 

slowly as stress becomes larger. In the case of 

the effect on the fracture probability by changing 

the standard deviation of yield strength, there is 

not nearly the effect of the standard deviation. 

The result is different from the 2-dimensional 

model's. 

The effects of the variation of the fracture 

toughness are similar to those in the 2 dimen- 

sional model except for some differences in the 

small bending stress. 
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